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ABSTRACT
We derive a new mass estimator that relies on internal proper motion measurements of
dispersion-supported stellar systems, one that is distinct and complementary to existing
estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that
there exists a radius where the mass enclosed depends only on the projected tangential velocity
dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at
the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass
is M(r−2) = 2G−1〈σ 2

T 〉∗r−2 and the circular velocity is V 2(r−2) = 2〈σ 2
T 〉∗. For a Plummer

profile r−2 � 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-
sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass
profiles of dispersion-supported galaxies. We illustrate its applicability using published proper
motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent
with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out
a core. We test our combined mass estimators against previously published, non-spherical
cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturally cuspy
profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for
the dynamic rotation curves are found to be accurate to 10 per cent while SIDM are accurate
to 15 per cent. Unfortunately, this level of accuracy is not good enough to measure slopes at
the level required to distinguish between cusps and cores of the type predicted in viable SIDM
models without stronger priors. However, we find that this provides good enough accuracy to
distinguish between the normalization differences predicted at small radii (r � r−2 < rcore) for
interesting SIDM models. As the number of galaxies with internal proper motions increases,
mass estimators of this kind will enable valuable constraints on SIDM and CDM models.
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1 IN T RO D U C T I O N

The lambda cold dark matter (�CDM) cosmogony, while successful
in describing the large-scale structure of our universe, still suffers
from potential discrepancies in modelling the properties on small
scales, primarily for dark matter haloes that are expected to host
the observed dwarf galaxies. For example, Milky Way satellites
have significantly lower dark matter densities in the inner regions
compared to the corresponding subhaloes in cosmological N-body
simulations – this is known as the Too Big To Fail problem (Boylan-
Kolchin, Bullock & Kaplinghat 2011). A potentially related issue
concerns the inner dark matter density profiles inferred from the
rotation curves of small disc galaxies, many of which are observed
to be cored/flat, while simulated �CDM haloes are cusped/rising

� E-mail: aalazar@uci.edu

– this is the cusp–core problem (Flores & Primack 1994; Moore
1994; de Blok 2010). Feedback from star formation can potentially
explain this discrepancy in larger dwarf galaxies (Governato et al.
2010; Pontzen & Governato 2012). However, if dark matter cores
exist within galaxies that have had too little star formation (M� �
106 M�) to affect the dark matter density slopes (Di Cintio et al.
2014; Chan et al. 2015; Tollet et al. 2016), then this could be an
indication that the dark matter is something other than CDM (see
Bullock & Boylan-Kolchin 2017, and references there in).

Though particularly important, the question of whether or not
the smallest galaxies have cusps or cores is notoriously difficult
to answer owing to the fact that they are dispersion supported.
While it is possible to quantify the detailed mass profiles of
spheroidal galaxies through the use of kinematic measurements
of individual stars in 3D (e.g. Wilkinson et al. 2002; Strigari,
Bullock & Kaplinghat 2007), until recently we have been limited to
data sets that include only 1D velocities along the line of sight. This
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introduces a degeneracy between the inferred mass profile slope and
the underlying velocity dispersion anisotropy parameter β, which
quantifies the intrinsic difference between the radial and tangential
velocity dispersions.

One robust measurement that is possible with line-of-sight veloc-
ities is the integrated mass within a single characteristic radius for
each galaxy. This idea was first emphasized by Walker et al. (2009),
who used spherical Jeans modelling to show that the integrated
mass within an effective radius was independent of an assumed β

for a wide variety of assumptions for many galaxies. Wolf et al.
(2010) extended this idea, also using Jeans modelling, to show
that there exists, analytically, an idealized radius within which the
mass inferred from line-of-sight velocities is formally insensitive
to β. Under mild assumptions, this radius is where the log-slope
of the stellar tracer profile is equal to −3. Both the Walker and
Wolf mass estimators do remarkably well when compared to ab
initio cosmological simulations of (non-spherical) dwarf galaxies
in Campbell et al. (2017) and González-Samaniego et al. (2017).
They are also used extensively to interpret observed line-of-sight
velocity dispersion measurements (see Simon 2019, and references
there in).

We are entering a new era of astrometry, such that the internal
proper motions in distant dwarf spheroidal galaxies are now
becoming possible to measure with the advent of GAIA (Gaia
Collaboration 2016a,b, 2018a,b). Additionally, LSST may provide
similar advances (Abell et al. 2009). Measurements of stellar
velocities along the plane of the sky promise an important new
window into the mass and density structure of dwarf galaxies. The
results of Massari et al. (2018, 2019) provide an exciting first look
at what we expect to measure in the coming years by providing
plane of the sky velocity dispersion measurements for Sculptor and
Draco, respectively.

The article is outlined as follows: In Section 2, we briefly intro-
duce the spherical Jeans equation and the coordinate system used as
the basis of our analysis. Section 3 derives the mass estimators by
combining the Jeans equation and proper motions measured from
the plane of the sky, which includes the key assumptions considered
therein. Section 4 demonstrates the use of the combined mass
estimators to provide an implied massdensity slope for currently
available proper motions of Draco and Sculptor. Section 5 assesses
our estimators with mock observations constructed from high-
resolution simulations. In Section 6, we discuss possible biases
that might arise due to Jeans modelling, and finally, Section 7
summarizes our results and we provide concluding remarks.

2 PRELIMNARIES

In what follows, lower case r represents the (physical) three-
dimensional radius and the upper case R represents the (physical)
two-dimensional projected radius.

2.1 The spherical Jeans equation

For a spherically symmetric steady-state system, the first moment
of the collisionless Boltzmann equation for a stellar phase-space
distribution takes the form of the spherical Jeans equation (Binney &
Tremaine 2008):

− d�(r)

dr
= 1

n�(r)

d

dr

(
n�σ

2
r (r)

) + 2βσ 2
r (r)

r
, (1)

which relates the total gravitational potential, �(r), of the stellar
system to its two tracers: the intrinsic radial velocity dispersion,

σ 2
r := 〈v2

r 〉 − 〈vr 〉2, and the three-dimensional stellar number den-
sity, n�(r). The quantity,

β(r) := 1 − σ 2
θ + σ 2

φ

2σ 2
r

, (2)

is a measure of the velocity dispersion anisotropy of the tracer
population, where σ θ and σφ are the intrinsic velocity dispersions
tangential to radius r. We will assume that σ θ = σφ . Radially
biased systems tend to have β → 1 while β → −∞ constitutes
tangentially biased measurements. In addition, the total intrinsic
velocity dispersion follows

σ 2
tot(r) = σ 2

r + σ 2
θ + σ 2

φ = (3 − 2β)σ 2
r (r). (3)

The total mass profile of the dynamical system is an implied
quantity of equation (1), such that,

M(r|β) = rσ 2
r (r)

G
(γ� + γσ − 2β), (4)

where G is Newtons gravitational constant and the logarithmic
slopes are defined as

γ� := −d log n�

d log r
; γσ := −d log σ 2

r

d log r
;

γβ := −d log β

d log r
. (5)

2.2 Coordinate system of measurements

We use the coordinate system discussed in Strigari et al. (2007)
such that the three-dimensional components of stars’ velocity in a
spherically, steady-state systems are comprised of the components
radial, vr, and transverse, vθ and vφ . The projected proper motions
are composed of these three-dimensional velocities, that is, along
the measured line of sight,

vlos = vr cos θ + vθ sin θ, (6)

where r · z = cos θ and z is the line-of-sight direction, and along
the plane of the sky, the components parallel and transverse to the
projected radius R are

vR = vr sin θ + vθ cos θ and vT = vφ, (7)

respectively. Here, the variances of the velocity dispersions are given
by σ 2

i := 〈v2
i 〉 and σφ = σ θ is assumed. The derived mapping of the

observable proper motions to the deprojected, three-dimensional
tracer profiles are


�σ
2
los(R) =

∫ ∞

R2

dr2

√
r2 − R2

[
1 − R2

r2
β

]
n�σ

2
r , (8)


�σ
2
R(R) =

∫ ∞

R2

dr2

√
r2 − R2

[
1 − β + R2

r2
β

]
n�σ

2
r , (9)


�σ
2
T (R) =

∫ ∞

R2

dr2

√
r2 − R2

[1 − β] n�σ
2
r . (10)

The combination of the proper motions also satisfy σ 2
tot = σ 2

R +
σ 2
T + σ 2

los. For an observed galaxy, 
�(R) is the projected stellar
density, which is related to the three-dimensional n�(r) via an Abel
inversion, equation (A1).

3 MA SS ESTIMATO R S FRO M PRO PER
M OT I O N S

In this section, quantities enclosed in brackets with an asterisk as
〈···〉∗ indicates a measurement to be luminosity weighted, r1/2 is
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the three-dimensional, deprojected half-light radius, and Re is the
two-dimensional effective radius.

3.1 Measurements along the line-of-sight

Here, we rederive the main results from Wolf et al. (2010) using
the assumptions discuss there-in: Consider a velocity dispersion-
supported stellar system that is well studied, such that 
�(R) and
σ los(R) are determined accurately by observations. In this system, all
of the stars are assumed to be bound with no dynamical interlopers.
If we model the systems mass profile using the Jeans equation,
any viable solution will keep the combination of 
�σ

2
los(R) fixed to

within allowable errors. We start with the mapping of σ los to σ r. To
utilize equation (1), equation (8) is massaged to an invertable form
that is applicable to that of an Abel inversion


�σ
2
los(R) =

∫ ∞

R2

dr2

√
r2 − R2

[
n�σ

2
r (1 − β) +

∫ ∞

r2
dr̃2 βn�σ

2
r

2r̃2

]
.

The term in the brackets on the right-hand side has to be a well-
defined quantity, as the left-hand side is an accurate, observed
quantity ignorant of the form of β. Therefore, we are allowed
to compare different forms of β with one another; we equate the
isotropic form of the integrand, β = 0, with an integrand that is
dependent on some arbitrary β, as this is the simplest case one can
consider as a comparison:

n�σ
2
r

∣∣
β=0

= n�σ
2
r (1 − β) +

∫ ∞

r2
dr̃2 βn�σ

2
r

2r̃2
. (11)

By then taking a derivative in respect to log r and introducing a factor
of rσ 2

r /G on both sides, we can massage the left-hand and right-
hand side into their respective forms of equation (4) and evaluate
the difference:

M(r|β) − M(r|0) = rσ 2
r β

G
(γ� + γσ + γβ − 3). (12)

From this expression, we see that there can exist a radius, req, where
the term in the parentheses vanishes based off of mapping projected
line-of-sight measurements to the intrinsic quantities of the system,
that is,

γ�(req) = 3 − γσ (req) − γβ (req). (13)

Moreover, if σ 2
r (r) and β(r) are slowly varying, such that the log-

slope profiles are approximately zero, i.e. γ σ (req) � 0 and γ β (req)
� 0, then the degeneracy of the mass profile written in equation (4)
is effectively minimized. This would then have the right-hand side
of equation (12) to be subsequently null. Furthermore, if γ �(req) �
3, then this equates the radius of minimized anisotropy as req � r−3,
which is the radius where the differential log-gradient of the stellar
tracer profile is −3.

To determine the value of M(req), equation (11) is deprojected via
an Abel inversion to isolate out the combination of n�σ

2
r (equation

A5; Wolf et al. 2010). This is then hit with a derivative in respect to
log r and is inserted into equation (4) to obtain

GM(r)

r
= (3 − 2β)σ 2

r (r) + (γ� + γσ − 3) σ 2
r (r)

= σ 2
tot(r) + (γ� + γσ − 3) σ 2

r (r), (14)

where we have related the total intrinsic velocity dispersion using
equation (3). From the assumptions prior, if γ σ (req) � 3, then the
parenthetical term vanishes and req � r−3, giving us

M(r−3) � σ 2
tot(r−3)r−3

G
. (15)

Wolf et al. (2010) showed that to a good approximation, σ 2
tot(r−3) �

〈σ 2
tot〉∗ for models that match observations. Furthermore, spherical

symmetry demands that the line-of-sight dispersion obeys 〈σ 2
tot〉∗ =

3〈σ 2
los〉∗ (see Section 6.1). This will lead us to obtain an idealized

estimator at r−3:1

M ideal
−3 ≡ M(r−3) = 3

〈
σ 2

los

〉∗
r−3

G
. (16)

Additionally, with the foundations of spherical symmetry, the
implied circular velocity at r−3 is particularly simple

Vcirc(r−3) =
√

3
〈
σ 2

los

〉∗
. (17)

Wolf et al. (2010) showed that for a variety of analytical stellar
profiles, r−3 is close to r1/2 � 4Re/3, giving

M(r−3) � 3
〈
σ 2

los

〉∗
r−3

G
; M(4Re/3) � 4

〈
σ 2

los

〉∗
Re

G
. (18)

In the coming sections, we utilize the arguments stipulated here
in the derivation of equation (16), where we seek to determine if
another radius, one that is also independent of the anisotropy, exists
for the two other proper motion mappings, such that it is independent
of req found previously. From here-on, we will refer equation (16)
as M−3 and equation (17) as V−3.

3.2 Plane of the sky: Measurements parallel to R

Consider a dispersion-supported stellar system that is well studied,
such that σR(R) is determined accurately through observations.
We begin by relating the projected measurement of σR(R) to the
intrinsic quantities via equation (9). This is then rewritten to an
invertable form (see Appendix A),


�σ
2
R(R) =

∫ ∞

R2

dr2

√
r2 − R2

[
n�σ

2
r −

∫ ∞

r2
dr̃2 βn�σ

2
r

2r̃2

]
. (19)

From its invertable form, the left-hand side is an accurate, observ-
able quantity that is ignorant of the form of β. Therefore, the term
in the brackets must be a well-defined quantity regardless of the
form of β chosen. Therefore, we are allowed to consider the simple
case of equating the isotropic integrand with an integrand that is
dependent on some arbitrary anisotropy

n�σ
2
r

∣∣
β=0

= n�σ
2
r −

∫ ∞

r2
dr̃2 βn�σ

2
r

2r̃2
. (20)

By then taking the derivative in respect to log r and introducing a
factor of rσ 2

r /G to both sides, the left-hand and right-hand side are
allowed to be rewritten in the form of the integrated Jeans masses,
allowing use to express the difference

M(r|β) − M(r|0) = rσ 2
r β

G
. (21)

Importantly, this expression lacks the parenthetical term seen in
equation (12). We conclude that a radius that minimizes the
anisotropy, at least, for the assumptions we considered in the Jeans
modelled measurements of σR(R), does not exist in whatever

1Throughout, we refer to an idealized solution as one that considers the
quintessential case of γ β = γ σ = 0 at the radius that minimizes the
anisotropy. We do not expect physical results to perfectly match this
behaviour, but we instead presume the profiles to be relatively small enough
at the expected radius where this is prominent. We will remain agnostic on
this point until later in the article.
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limiting case of β we were to impose, since the anisotropy is a
dependent quantity throughout the mass profile.

3.3 Plane of the sky: Measurements transverse to R

Consider a dispersion-supported stellar system that is well studied,
such that σT (R) is determined accurately through observations,
in which all stars are bounded inside the system. We begin by
relating of σT (R) to σ r(r), given by equation (10). Fortunately, this
is already in an invertable form; we now equate its isotropic and
general anisotropic form to one another

n�σ
2
r

∣∣
β=0

= n�σ
2
r (1 − β), (22)

differentiate it with respect to log r, and algebraically manipulate to
acquire the expression

M(r|β) − M(r|0) = rσ 2
r β

G
(γ� + γσ + γβ − 2). (23)

We see that there can exist a radius, that we shall denote as
r̃eq,2 where the parenthesis vanishes. The possible existence of r̃eq

therefore minimizes the dependency of β around the region r̃eq for
measurements solely based off of σT (R), such that,

γ�(r̃eq) = 2 − γσ (r̃eq) − γβ (r̃eq). (24)

Moreover unless galaxies have large variation in σ 2
r and in β with

radius, we may expect γσ (r̃eq) + γβ (r̃eq) � 2, as least for radii in the
vicinity of r̃eq < r−3 � r1/2 for commonly assumed stellar density
profiles. Therefore, we can expect that to a good approximation,
r̃eq � r−2, where r−2 is the radius at which the log-slope of the
tracer profile is equivalent to −2.

Like before, we now consider the integrated Jeans mass. The
dependence of β can be absorbed into the definition of the intrinsic
total velocity dispersion. Moreover, the formulation of equation (3)
allows, (1 − β)σ 2

r = σ 2
θ = σ 2

T with the assumption of spherical
symmetry. The Jeans equation becomes

GM(r)

r
= 2σ 2

θ (r) + (γ� − γσ − 2)σ 2
r (r). (25)

If in fact that γ � + γ σ ≈ γ � � 2, the term in parenthesis vanishes at
the radius r−2. The remaining term on the right-hand side depends
only on the intrinsic transverse component, σ θ = σT , which is an
observable.3 Finally, we obtain an idealized estimator

M ideal
−2 ≡ M(r−2) = 2

〈
σ 2
T
〉∗

r−2

G
, (26)

where we have assumed σθ (r−2) � σ 2
T (r−2) � 〈σ 2

T 〉∗. The implied
circular velocity at r−2 is particularly succinct

Vcirc(r−2) =
√

2
〈
σ 2
T
〉∗

. (27)

From here-on, we will refer equation (26) as M−2 and equation (27)
as V−2.

2This is not to be associated with the radius, req, seen in the derivation of
M−3, as that req is constrained to measurements of σ los. Simply, the req of
equation (13) and r̃eq of equation (24) are taken to be nonequivalent.
3Note that the term in brackets in equation (10) is constrained by observables.
Specifically, the intrinsic transverse dispersion, σ θ , it is related to the
transverse component along the plane of the sky via (1 − β)σ 2

r = σ 2
θ = σ 2

T .
This is what allows proper motion measurements to constrain the anisotropy
(Strigari et al. 2007).

3.4 Overview of assumptions

We have made a few assumptions in the derivation of M−3 and M−2.
In addition to the strong assumption that galaxies are spherical, we
have assumed that the velocity dispersions are relatively flat such
that σ 2

tot(r−3) � 〈σ 2
tot〉∗ = 3〈σ 2

los〉∗ and σ 2
θ (r−2) = σ 2

T (r−2) � 〈σ 2
T 〉∗.

Wolf et al. (2010) showed that the assumption for the line-of-sight
component is excellent for a variety of models that match line-of-
sight data, yet, for the transverse component, not enough data are
available to test this assumption. Some justification comes from
Section 5, where we use a set of cosmological simulations of dwarf
galaxies in mock observations and find that these assumptions are
good to better than 10 per cent.

Secondly, we have assumed that the intrinsic radial velocity
dispersion varies minimally with radius compared to the tracer
profile out to r−3. More specifically we assume that the log-slopes
of the tracer velocity dispersion profiles are small compared to −3
and −2 at r−3 and r−2, respectively. Thirdly, we assume that the
velocity dispersion anisotropy varies slowly with radius compared
to the light profile. If β(r) and σ r(r) vary quickly as a function of
radius r, then the mass estimators will break down.

In order to map M−3 and M−2 to observables measured in two
dimensions, the characteristic radii of the tracer profile, r−2 and r−3,
must be mapped to the projected tracer profile that is observed. If
we assume that the three-dimensional profile is well described by
a Plummer (1911) profile, then r−3 � 4Re/3 and r−2 � 4Re/5. That
is

M(3r1/2/5) � 6
〈
σ 2
T
〉∗

r1/2

5G
; M(4Re/5) � 8

〈
σ 2
T
〉∗

Re

5G
. (28)

To clarify, if the underlying three-dimensional tracer profile is
not well-described by a Plummer profile, then this mapping will
fonder. Ultimately, the mapping between the three-dimensional
characteristic radii and observed two-dimensional radii will obey
another relationship that depends on the underlying profile.

Fig. 1 provides a test and illusration of the derivation presented
above using a full mass profile analysis derived in Appendix A.
Shown are the mass profiles implied by various choices of constant
velocity dispersion anisotropy constrained by dispersion compo-
nents along the line of sight (equation A2; top panel), parallel
(equation A10; middle panel), and tangential (equation A12; bottom
panel) under the assumption of constant β (denoted by β0).
We assume that the velocity dispersions for each component are
constant with R, and set them equal to the luminosity-weighted
median values observed for Sculptor (9, 11.5, and 8.5 km s−1,
respectively). We also assume that the tracer profile follows a
Plummer, again matched to the median value for Sculptor given in
Table 1. The white circles show the estimators M−3 and M−2 in the
top and bottom panels, respectively. Encouragingly, they intersect
the regions where all of the varying β0 mass profiles converge.
As anticipated in Section 3.2, constraints imposed by the parallel
component, σR, show no convergence point. This figure shows
that the mass estimators we have derived work under reasonable,
but idealized assumptions. In the last last section of Appendix A,
we show a similar analysis that allows for parametric forms of β(r)
commonly used in Jeans modelling analyses. We show the idealized
mass estimators work well unless β(r) varies rapidly with radius (as
expected).

Of course, real galaxies will not obey these assumptions with
absolute precision. Perhaps most importantly, no galaxy is perfectly
spherical. We expect real galaxies to have velocity dispersion pro-
files that vary with radius to some degree. Galaxies also have light
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Figure 1. Radii of minimized uncertainty for idealized models. Curves
depict the cumulative mass profiles derived in Appendix A based on fixed
line-of-sight (top panel), parallel (middle panel), and transverse (bottom
panel) velocity dispersions, all of which use the median values for Sculptor
from Table 1. The results assume that the observed dispersion profile for
each component is constant with R. The lines correspond to several choices
of constant intrinsic anisotropy β(r) = β0 as indicated by the colours. We
also assume that the underlying tracer profile follows a Plummer model. The
small white circles in the top plot and bottom plot show masses predicted
by the M−3 and M−2 estimators, respectively. These points intersect the
region of mass that is independent of the anisotropy. Note that the parallel
component has no such intersection, as anticipated in Section 3.2. The
dotted lines give the characteristic log-slope radii of the tracer profile while
the dashed shows the standard mapping to the projected observable, Re.

tracer profiles that will not necessarily obey convenient functional
characterizations such as the Plummer model in three dimensions,
which will make determining r−2 and r−3 more difficult. We test
these assumptions along with our estimator in Section 5 using
cosmological dwarf galaxy simulations.

4 MODELLING FRO M O BSERVATIONS

We now apply our mass estimator using kinematic measurements
for the spheroidal galaxies, Draco and Sculptor. Table 1 lists the
observed properties that we adopt. We assume that each galaxies
stellar distribution obeys a Plummer (1911) profile in deprojection
and in projection. We used the radial conversions for a Plummer
profile given in Wolf et al. (2010).

4.1 The internal structure of Draco and Sculptor

Fig. 2 plots the implied mass of Draco (squares) and Sculptor
(circles) using both M−3 (magenta colored) and M−2 (cyan colored).
With the current data today, masses implied from well studied, line-
of-sight measurements have smaller error bars while the implied
masses from the tangential along the plane of the sky have relatively
larger error bars. Also plotted are the NFW (Navarro, Frenk &
White 1997) mass profiles at fixed halo mass, Mvir = 2 × 1010 and
3 × 109 M�. Concentrations are set to 16.3 and 20.2, respectively,
based on the median values for subhaloes of this mass in the z = 0
dark matter only physics results of the Phat-ELVIS simulations
(Kelley et al. 2019). The subhalo masses were chosen so that at
median value of the concentration for the profiles intersect the line-
of-sight mass points. In principle, by comparing the location of the
tangentially derived masses to the extrapolated NFW curves can
allow us to determine if the predictions are consistent with a cuspy
profile. Both galaxies appear consistent with sitting within a typical
CDM halo. Note that this result for Draco is in agreement with
results by Read, Walker & Steger (2018), who find Draco to be
cusped around the same radial range.

Fig. 3 provides an alternative view by plotting observed circular
velocities using now V−3 and V−2. The rotation curves for NFW
profiles at fixed values of Vmax = 19 and 34 km s−1 are also plotted,
with median values of rmax = 1.67 and 4.71 kpc, respectively, for
the same subhaloes of Phat-ELVIS. As seen previously in Fig. 2,
both measurements are consistent with the expectations for an NFW.
Sculptor’s median does fall below the extrapolated NFW, though
it is easily consistent within error. If Sculptor has a cored inner
density it could have interesting implications. With a stellar mass
of M� � 4 × 106 M�, this galaxy lies near the low-mass edge of
where feedback may be able to produce significant cores (Bullock &
Boylan-Kolchin 2017). This motivates the acquisition of additional
data to provide a more precise measure of 〈σ 2

T 〉∗.

5 MOCK O BSERVATI ONS

We are now interested in testing the mass estimators discuss
previously, including the one derived here for the first time. We
use simulations that have been previously published with data
kindly supplied by the authors (Fitts et al. 2017; Robles et al.
2017). The simulations were run as part of the feedback in realistic
environments (FIRE) project and include galaxies simulated in both
cold dark matter (CDM) and self-interacting dark matter (SIDM).
Table 2 lists the global parameters of the galaxies considered herein
as well as the references the reader can refer to with the specific
physics used when running the FIRE-2 algorithm (Hopkins et al.
2014; Hopkins 2015; Hopkins et al. 2018).

We specifically have chosen low-mass galaxies that are dispersion
supported that resemble dwarf spheroidals. The values of M�/Mvir

for the CDM galaxies do not produce enough energy to transform
cusps to cores and thus provide a good test for ‘cuspy’ underlying
profiles (Di Cintio et al. 2014; Chan et al. 2015; Tollet et al. 2016;
Bose et al. 2019), while SIDM haloes are naturally core-like. Their
stellar masses are low enough that episodic gas outflows do not
bias estimates from equilibrium when using Jeans modelling (El-
Badry et al. 2016, 2017). In summary, we consider two types of
simulations:

CDM: Dark matter is considered to be collisionless. The sample
of galaxies simulated in CDM are m10b, m10c, m10d, and m10e,
which were first presented in Fitts et al. (2017) and explored further
in Fitts et al. (2018, 2019). The fiducial CDM simulations have
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Table 1. Observational measurements considered in this analysis.

Galaxy
�

〈σ 2
los〉∗

�
〈σ 2

R〉∗
�

〈σ 2
T 〉∗ Re r1/2 M−3 V−3 M−2 V−2

(km s−1) (km s−1) (km s−1) (pc) (pc) (M�) (km s−1) (M�) (km s−1)

Draco (a,b)10.1+0.5
−0.5

(e)11.0+2.1
−1.5

(e)9.9+2.3
−3.1

(d,f )214+2
−2 279+2

−2 2.03+0.20
−0.20 × 107 17.5+0.9

−0.9 7.80+4.89
−3.63 × 106 14.0+3.3

−4.4

Sculptor (a,b)9.0+0.2
−0.2

(c)11.5+4.3
−4.3

(c)8.5+3.2
−3.2

(d,f )280+1
−1 365+1

−1 2.11+0.09
−0.09 × 107 15.6+0.3

−0.3 7.53+5.67
−5.67 × 106 12.0+4.5

−4.5

Notes. Here, M−3 and V−3 are computed using equations (16) and (17), respectively, while M−2 and V−2 used equations (26) and (27),
respectively.
References – (a): Walker et al. (2009), (b): Wolf et al. (2010), (c): Massari et al. (2018), (d): Muñoz et al. (2018), (e): Massari et al. (2019),
(f): Simon (2019).

Figure 2. Mass measurements for Draco and Sculptor. For each galaxy,
points correspond to the line-of-sight mass (magenta), M−3, and the
projected tangential mass (cyan), M−2, at two characteristic radii. Lines show
representative NFW mass profiles of fixed Mvir with median concentration
set by subhaloes in the Phat-ELVIS simulations.

a baryonic particle mass of mb = 500 M� with force resolution
εb = 2 pc and a dark matter mass mDM = 2500 M� with softening
εDM = 35 pc. This sample of galaxies have their dark haloes forming
cusps z = 0.

SIDM: This considers the CDM power spectrum but with a
imposed self-interaction cross-section of σ/m = 1 cm2 g−1 that is
velocity independent. The sample of galaxies considered here are
the analogues of the CDM galaxies: m10b, m10c, m10d, and m10e.
SIDM analogues of m10d and m10b were first presented in Robles
et al. (2017) and further explored with m10c and m10e in Fitts et al.
(2019). A key result is that all haloes have formed appreciable cores
at z = 0.

5.1 Methodology

5.1.1 Properties in three dimensions

The centre position of the galaxies is determined by using an iter-
ative ‘shrinking spheres’ method (Power et al. 2003; Navarro et al.
2004). That is, the centre of mass of star particles is successively
computed in a sphere and then has its radius reduced by 50 per cent,

Figure 3. Observed circular velocities of Draco and Sculptor. Circular
velocity curves for NFW subhaloes of a given Vmax are shown for the two
characteristic radii. Each assumes a median rmax as derived from the Phat-
ELVIS simulations.

Table 2. Global properties of the 1010 M� galaxies at z = 0.

Halo Mvir M� r1/2 DM References
Name (M�) (M�) (pc) Core?

(1) (2) (3) (4)

Cold dark matter
m10b 9.29 × 109 4.65 × 105 340 � a, b, c
m10c 8.92 × 109 5.75 × 105 350 � a, b, c
m10d 8.43 × 109 1.53 × 106 530 � a, c
m10e 1.02 × 1010 1.98 × 106 620 � a, c

Self-interacting dark matter; �/m = 1 cm2 g−1

m10b 8.13 × 109 1.05 × 106 504 � b, c
m10c 8.71 × 109 7.48 × 105 430 � c
m10d 8.10 × 109 1.37 × 106 591 � b, c
m10e 9.95 × 109 1.63 × 106 572 � c

Notes. (1): The mass of the dark matter halo defined by the background
virial overdensity (Bryan & Norman 1998).
(2): The stellar mass of the galaxy; M� := Mvir(< 10 per cent rvir).
(3): The deprojected radius that contains half of Mstar.
(4): Verification that a dark matter core has formed.
References – (a): Fitts et al. (2017), (b): Robles et al. (2017), (c): Fitts et al.
(2019).
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Mass estimates from proper motions 5831

Figure 4. Mock observations of galaxies in the plane of the sky: The stellar surface density of the stars for our dwarf galaxies (given in columns) actualized
along a random orientation of the plane (X, Y) looking along the line of sight, z, in CDM (top row) and SIDM (bottom row). The centre of mass of the galaxy
determined from this plane of observation is centred at the origin. This shows how elongated several galaxies can appear projections when viewed in the plane
of the sky for observations.

which is then re-centred on the new centre of mass. This is done
iteratively until a thousand particles enclose the minimized sphere.
The centre of mass velocity is then computed using all of the star
particles enclosing the final minimized radius. Three-dimensional
positions and velocities of all the star particles, associated with that
galaxy, are then transformed to be relative to the centre of mass
position and velocity, respectively.

The stellar profiles are assembled using 25, log-spaced radial
bins of starting from the centre of mass of the stars out to 4 ×
r1/2. In quantifying the characteristic radii of r−2 and r−3, the stellar
profiles are smoothed using a third ordered spline fit as profiles
tend to be noisy. From there, r−2 and r−3 are interpolated from the
log-gradients of the resultant fits. In the construction of the intrinsic
dispersion profiles, the Cartesian velocities relative to the centre of
mass are transformed to spherical coordinates and are evaluate using
the same spherical bin spacing. In each bin shell of r, the relative
velocities are weighted by their associated stellar particle mass. This
includes both the random motions and streaming motions.

We also compared between a sample containing only star particles
bound to the dynamical system and another sample containing both
bound and unbound star particles to the dynamical system. Results
for these two population samples were found to be indistinguishable,
as unbound star particles only comprised 1 per cent of the galaxies’
stellar population. Final results presented here include both bound
stars and unbound stars.

5.1.2 Idealized mock observations

For each galaxy, we construct 1000 mock observations. That is,
mock observations are done in 1000 random orientations with each
orientation evaluated as follows: the relative Cartesian positions
and velocities of the galaxies’ stellar particles are rotated into a new

orientation denoted by prime coordinates, such that the star particles
along the new line-of-sight axis, z

′
with velocity vz′ ≡ vlos, are

stacked along the projected x
′
–y

′
plane. From the galaxy projected

on this plane, the centre position is determined by re-implementing
an iterative ‘shrinking spheres’ method. This again determines the
centre-of-mass position and velocities of the stars found on the x

′
–y

′

plane. We define this as the centre of the galaxy when analysing its
projection in two dimensions, where we now label the centre po-
sition and velocity as X = (X, Y ) and V = (VX, VY ), respectively.
Hereafter, we drop the prime notation for the line-of-sight axis.

Fig. 4 illustrates a single mock observations by projecting the
stellar particles of each galaxy using the method discussed in
the previous paragraph. These images have been made after the
transformation of coordinates and placing the origin at the centre
of mass from the projected distribution of stars. Note that for both
CDM and SIDM, the galaxies are not spherical but do appear to have
morphologies comparable to actual observed dwarf spheroidals.
That is, dwarf galaxies can appear elongated in the plane of sky
(plane X–Y in the figure).

The stellar surface profile is then assembled using spherical bins
of R = √

X2 + Y 2, were we used 25, log-spaced concentric bins
starting from the projected centre of mass. From this profile, we fit a
projected Plummer profile out to R = 4 × r1/2 in order to obtain the
value of the effective radius, Re. That is, the best-fitting parameters
are determined by adjusting the parameters of a projected Plummer
in order to minimize a figure-of-merit function. The dispersion pro-
files are evaluated using the same bin spacing in spherical shells. The
relative velocities found in projection are transformed to cylindrical
values in correspondence to the coordinate system used in Section 2.
That is, the velocity components parallel and transverse to radius
R follows vR = (X · V )/R and vT = |X ∧ V |/R, respectively. In
each bin shell of R, the relative velocities in projection are weighted
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5832 A. Lazar and J. S. Bullock

Table 3. Simulated properties of our galaxies in relation to the assumptions summarized at the end of Section 3. Uncertainties are quoted as the 1σ dispersion
from the median. Values measured based off of the characteristic radii are given by columns (1–8) and measured values using only Re are given in columns
(9–12).

Halo γ σ (r−2) γ σ (r−3) �σT ,−2 �σtot,−3 V−2/Vtrue V−3/Vtrue ξ est ξ true V ′
−2/Vtrue V ′

−3/Vtrue �Re,−2 �Re,−3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Cold dark matter; (Cusps)
m10b 0.11 0.16 0.96+0.04

−0.04 0.98+0.03
−0.03 0.96+0.01

−0.01 0.92+0.03
−0.03 0.45+0.08

−0.08 0.54 1.09+0.13
−0.12 1.02+0.14

−0.14 0.83+0.11
−0.10 0.80+0.11

−0.10

m10c 0.09 0.74 0.97+0.04
−0.04 1.02+0.06

−0.04 0.99+0.01
−0.01 0.96+0.04

−0.05 0.51+0.12
−0.10 0.57 1.10+0.05

−0.06 1.05+0.08
−0.09 0.86+0.04

−0.05 0.84+0.04
−0.04

m10d 0.02 0.56 1.01+0.04
−0.04 0.95+0.04

−0.04 1.00+0.02
−0.02 1.01+0.05

−0.04 0.47+0.11
−0.11 0.46 1.00+0.04

−0.04 1.01+0.07
−0.07 1.01+0.03

−0.03 0.98+0.03
−0.03

m10e 0.21 0.48 0.97+0.04
−0.03 0.93+0.06

−0.06 1.01+0.04
−0.04 1.02+0.07

−0.07 0.64+0.19
−0.19 0.63 1.09+0.11

−0.09 1.12+0.12
−0.12 0.89+0.06

−0.05 0.86+0.06
−0.05

Self-interacting dark matter; (Cores)
m10b 0.34 0.44 1.01+0.05

−0.06 1.04+0.08
−0.06 1.02+0.04

−0.04 0.93+0.04
−0.04 0.46+0.08

−0.08 0.75 1.14+0.09
−0.10 1.04+0.12

−0.12 0.87+0.05
−0.05 0.84+0.05

−0.04

m10c 0.20 0.26 0.96+0.05
−0.05 0.91+0.08

−0.06 1.15+0.04
−0.06 1.02+0.09

−0.08 0.50+0.12
−0.10 0.84 1.36+0.09

−0.10 1.25+0.13
−0.14 0.82+0.04

−0.04 0.79+0.04
−0.04

m10d 0.50 0.76 0.94+0.03
−0.03 1.13+0.03

−0.04 1.08+0.02
−0.02 0.93+0.03

−0.03 0.46+0.11
−0.11 0.77 1.27+0.05

−0.05 1.18+0.06
−0.05 0.82+0.02

−0.02 0.79+0.02
−0.02

m10e 0.17 0.49 0.97+0.03
−0.03 1.02+0.08

−0.08 0.99+0.05
−0.03 1.03+0.07

−0.08 0.64+0.19
−0.19 0.62 1.02+0.11

−0.08 1.06+0.14
−0.13 0.97+0.05

−0.05 0.93+0.04
−0.05

Notes. (1): The value of the log-slope of the radial dispersion profile at r−2.
(2): The value of the log-slope of the radial dispersion profile at r−3.
(3): The ratio of the stellar transverse velocity dispersion at r−2 normalized by the weighted median measurement:
�σT ,−2 := σT (r−2)/〈σT 〉∗.
(4): The ratio of the stellar total velocity dispersion at r−3 normalized by the weighted line-of-sight measurement:
�σtot,−3 := σtot(r−3)/(

√
3〈σlos〉∗).

(5): Ratio between the value of V−2, equation (27) at r−2, to the true dynamical circular velocity, Vcirc.
(6): Ratio between the value of V−3, equation (17) at r−3, to the true value of Vcirc.
(7): The implied power-law slope of the circular velocity profile using the mass estimators at the two characteristic radii, ξ est := log Vest/log r.
(8): The true slope of the dynamical component of the circular velocity curve at these two characteristic radii assuming a power law.
(9): Ratio between the estimator value of V that approximates r−2 = 4Re/5 from a forced Plummer fit, to the true value of Vcirc.
(10): Ratio between the estimator value of V that approximates r−3 = 4Re/3 from a forced Plummer fit, to the true value of Vcirc.
(11): Ratio between the value of r−2 and fitted value of Re forcing a Plummer profile: �Re,−2 := (4Re/5)/r−2.
(12): Ratio between the value of r−3 and fitted value of Re forcing a Plummer profile: �Re,−3 := (4Re/3)/r−3.

by their associated stellar particle mass. Finally, the stellar mass-
weighted velocity dispersions of the entire galaxy is measured
within 4 × Re for the value of Re determined from the surface
density fit. We consider both random and streaming motions.

5.2 Results

Our key results are presented in both Table 3 and Fig. 5. In the table,
we first list quantities measured to test the assumptions discussed
in Section 3.4. We start with columns 1 and 2, which give the
log-gradient slope of the intrinsic radial velocity dispersion, γ σ ,
at r−2 and r−3, respectively. These values are not precisely zero
(as we have assumed in our idealized estimator) but they are small
compared to the log-slope of the tracer profile (−3 and −2) at these
radii and therefore are roughly in line with our assumptions. This
behaviour is found to be present for all of our galaxies, regardless
of dark matter cores and cusps lying dormant. The radial anisotropy
is similarly slowly varying though we have not summarized it here.

Columns 3 and 4 show ratios that measure the flatness of observ-
able velocity profiles as the ratios σ̃T ,−2 := σT (r−2)/〈σT 〉∗ and
σ̃tot,−3 := σtot(r−3)/(

√
3〈σlos〉∗), respectively. For the component

transverse to the projected radius R, the median results are found to
be well approximated by σT (r−2) � 〈σT 〉∗ within 10 per cent even
when considering the 68 per cent dispersion for galaxies either with
cusps and cores. Interestingly, uncertainties are well constrained
for all of the galaxies in our sample when just considering binned
unit circles of projected radius R. Looking at the relation argued
in Wolf et al. (2010) and here for the total intrinsic velocity
dispersion (referring to column 4), the median results are found
to be well approximated by σtot(r−3) � √

3〈σlos〉∗ to better than

about 10 per cent for the cusped galaxies. The galaxies with cores
have this approximation accurate to 15–20 per cent when including
the 1σ deviations.

Shown in Fig. 5 are the actual circular velocity curves compared
to the combined measurements of the estimators at their character-
istic radii, V−2 at r−2 (cyan points) and V−3 at r−3 (magenta points).
The vertical error bars of the estimators depict the 1σ dispersion
from all 1000 mock projections. The total circular velocity profile is
given by the black curves for the CDM and grey curves for SIDM.
Columns 5 and 6 list the ratio between these velocity estimators
to the true value of the galaxies dynamical mass at the respective
characteristic radii. The CDM galaxies perform remarkably well
in predicting both the actual circular velocity measurement at
r−2 and r−3 within 10 per cent including uncertainties. The SIDM
galaxies are as good to 20 per cent when including 1σ dispersions.
By examining the outliers, we see the worst offsets stem from
difficulties in determining r−2 and r−3 of the simulated stellar
density profile, as these profiles are, in essence, noisy, which makes
the measurements of the log-gradient profiles without smoothing
the density profile problematic.

Since the idealized estimators, V−2 and V−3, predict the values of
the dynamical profile to acceptable accuracy, we now see established
predictions are when using characterizations modelled from the
Plummer profile. Columns 9–12 in Table 3 give the results for
performing a fit using a Plummer profile on the projected surface
density in each mock observation. The resulting values of Re are
used to measure the stellar mass-weighted median dispersion, which
have been depicted in Fig. 5. Columns 9 and 10 are the ratios of using
the estimators with Re while columns 11 and 12 are the comparisons
of the characteristic radii to the predicted mapping. We see that for
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Mass estimates from proper motions 5833

Figure 5. Measurements from mock observations. The rotation curves of our galaxies compared to the estimators at the characteristic radii r−2 and r−3 of the
stellar density profile. Black and grey lines show the rotation curves for each system simulated in CDM (cusps) and SIDM (cores). The estimators V−2 (cyan)
and V−3 (magenta) are plotted at r−2 and r−3, respectively, where circles denote the estimators for the CDM galaxies and squares are for galaxies in SIDM.
Error bars are the 1σ dispersion over all 1000 projections. Note that while the estimators are not perfect, they are accurate enough to discriminate between
SIDM and CDM models in each case, especially when the two estimators are combined. Estimates of the shapes of the rotation curves will be more uncertain
than the overall circular velocity normalization at each radius. Given large enough galaxy samples, measurements should enable a strong discriminant between
CDM and SIDM based on normalization alone.

many galaxies, the Plummer fits do not provide precise enough
characterizations to infer the values of r−2 and r−3 to better than
∼ 20 per cent.

As for modelling the slope of the underlying profile, we expect
that the local inner density behaves like a power law, ρ ∝ r−α such
that the integrated mass scales as M ∝ r3 − α . This leads us the
expected behaviour of circular velocity in relation to the local dark
matter density: V 2

circ ∝ r2−α . We derive the implied slope given by
the estimators by relating the inner density of the circular velocities
as a power law that is defined like ξ := log Vcirc/log r. This
allows then to relate the power laws for the density profile, i.e. α =
2(1 − ξ ).4 The implied slope of the circular velocity estimators is
given by the dashed red line in Fig. 5. In columns 7 and 8, we give the
implied slope of the combined estimators, ξ est, and the true slope
of the dynamical profile found at r−2 and r−3, ξ true, respectively.
Without considering the 1σ dispersion of measurements, estimates
from galaxies in CDM are predicted within 20 per cent while the
SIDM analogues are off by almost 50 per cent. While the cuspy

4Di Cintio et al. (2014) and Tollet et al. (2016) define cusps as α � [1 − 1.5],
which maps to ξ � 0.5, and define cores as α � [0 − 0.5], which maps to ξ

� 0.75.

profiles are reasonably well measured, the SIDM core profiles
estimated to be too cuspy via this method. This is unfortunate, as
this precision is not enough to distinguish between a cusp and core.
However, the accuracy on the normalization (V−2 at r−2) is good
enough to discriminate between absolute core densities expected for
CDM versus SIDM. With large enough data sets, this will provide
important constraints on models of this kind.

6 D ISCUSSION

We have used the spherical Jeans equation to infer two idealized
mass estimators that depend on the stellar proper motions measured
in observations. Specifically, we there are two radii, independent
from one another, that potentially minimizes the anisotropy of
the mass profile: one radius based off of measurements of the
velocity dispersions along the line of sight and another radius from
measurements for dispersions transverse along the plane of the sky.

6.1 Constraints from the virial theorem

The scalar virial theorem has been historically utilized to pro-
vide approximate mass constraints for spheroidal galaxies (e.g.
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5834 A. Lazar and J. S. Bullock

Tully & Fisher 1977; Busarello et al. 1997). That is, the scalar
virial theorem is observationally applicable, such that dispersion-
supported systems can probe the integrated mass profile within the
stellar extent without the degeneracies provided by the anisotropy.
It is constructed from the diagonalized components of the velocity
dispersion tensor, which describes the local distribution of velocities
at each point in space. The trace of diagonal components provides an
extended scalar virial theorem (Errani, Peñarrubia & Walker 2018)

〈
σ 2

α

〉∗ + 〈
σ 2

δ

〉∗ + 〈
σ 2

los

〉∗ = 4πG

∫ ∞

0
dr rn�(r)M(r)

≡ 〈
σ 2

tot

〉∗
(29)

where 〈σ 2
α 〉∗ and 〈σ 2

δ 〉∗ are defined as the luminosity-averaged veloc-
ity dispersions of the two velocity components tangential to the line
of sight. By design, equation (29) provides a good integral constraint
on the dynamical mass, as the entire expression is independent of
the anisotropy. The line-of-sight component can be utilized as a con-
straint via the projected virial theorem (e.g. Agnello & Evans 2012;
Errani et al. 2018). Adding dispersions in the α and δ directions
would enable a tighter constraint on 〈σ 2

tot〉∗. Note however, that when
written this way we do not provide any additional constraint on β.

Working in a Cartesian coordinate system, such that los → z,
α → x, and δ → y, then spherical symmetry would demand each
component of velocity dispersion to be equal: 〈σ 2

x 〉∗ = 〈σ 2
y 〉∗ =

〈σ 2
z 〉∗. The coordinate system introduced in Section 2 does not force

this equality and allows for separate components of the luminosity-
averaged velocity dispersion to constrain the velocity dispersion
anisotropy β (Strigari et al. 2007). The two components, σR and
σT , depend on β differently and are not necessarily equal.5 Note
that when equations (8)–(10) are added together, we find 〈σ 2

T 〉∗ +
〈σ 2

R〉∗ + 〈σ 2
los〉∗ = 〈σ 2

tot〉∗ such that equation (29) can be satisfied. By
examining the components separately, we can have mass estimators
that provide information at a different radius than the one enabled
from line-of-sight motions alone.

6.2 Possible biases in Jeans modelled mass estimates

Our mass estimates rely on the fact that dispersion-supported sys-
tems are approximately in dynamical equilibrium and are accurately
modelled by the spherical Jeans equation. Non-steady-state systems,
ones that significantly deviate from dynamical equilibrium, can
lead to biased estimations of the complete dynamical mass. This
can lead to systematically biased mass estimates (e.g. Amorisco &
Evans 2011; Errani et al. 2018). For the simulated galaxy sizes
considered in our analysis, mass estimates with short time-scale
fluctuations of the potential well are non-trivially biased (El-Badry
et al. 2017; González-Samaniego et al. 2017). For the largest kind
of dispersion-supported systems, ones with a stellar mass of M� ≈
108 − 10 M�, uncertainty is as large 20 per cent of the dynamical
mass. To minimize the variability of energetic outflows, mass
estimates are best focused on dwarf spheroidals at around the
threshold of lowest detectability, i.e. low-mass dwarfs, as this should
reduce the likelihood of potential fluctuations biasing the stellar
tracers. Using simulated data, we have shown that our estimate at r−2

is able to obtain the normalization to better than 20 per cent when
using V−2 for low-mass dwarf galaxies. As for the applicability
to observations, it is important that careful measurements of the
highest precision are obtained in order to dissociate between
possible models embellished with systematic errors

5Though symmetry demands 〈σ 2
T 〉∗ + 〈σ 2

R〉∗ = 2
3 〈σ 2

tot〉∗ = 2〈σ 2
los〉∗.

Although our simulated galaxies are analogous to those in the
field, Local Group satellites also experience tidal stripping of
the main halo, which can preferentially bias the estimates of the
satellites dynamical mass. However, analysis from Klimentowski
et al. (2007) has already eluded that velocity dispersions are well
modelled by the Jeans equation for even in the case of mildly tidally
disrupted dwarf galaxies, as long as unbound, interloping stars are
properly accommodated for in the stellar sample. For the case of
Draco and Sculptor considered here, they are both satellites of the
Milky Way and are therefore, in principle, subjected to tidal forces
that could render mass models from the Jeans equation inadequate.
However, no sign of strong tidal influence is apparent (Piatek et al.
2002; Coleman, Da Costa & Bland-Hawthorn 2005).

7 C O N C L U D I N G R E M A R K S

Using the spherical Jeans equation, we have derived a mass
estimator that depends on stellar kinematics measured along the
plane of the sky, specifically the velocity dispersion tangential
to the projected radius R. We have shown that under idealized
but reasonable assumptions, equation (26) provides the cumulative
mass within a characteristic radius, r−2, independent of the stellar
velocity dispersion anisotropy β. This ideal radius is where the log-
slope of the underlying tracer profile is −2. For Plummer profiles r−2

� 4Re/5 � 3r1/2/5. We also showed that a β-independent estimator
does not exist for the velocity dispersion parallel along the plane of
the sky. Fig. 1 summarizes this result. Our derivation followed the
approach in Wolf et al. (2010), and relied on similar assumptions:
that the stellar velocity dispersion profiles σ r(r) and β(r) vary slowly
compared to the tracer profile itself out to r1/2.

To test our assumptions and our estimators, we employ previously
published simulations of dwarf galaxies done for both CDM and
SIDM dark matter physics. We find that σT is indeed flat in the
vicinity of r−2 for both dwarf galaxies of CDM and SIDM and found
that our mass estimator is accurate in quantifying the enclosed mass
at r−2. For CDM, the estimates for the dynamic rotation curves are
found to be accurate to 10 per cent for both estimators while SIDM
are accurate to 15 per cent. This level of absolute mass accuracy
is good enough to discriminate between expected core densities in
SIDM and CDM models. Unfortunately, this level of accuracy is not
good enough to regularly measure slopes at the precision required
to differentiate between cusps and cores in real data without deeper
prior to help us understand the underlying tracer profile shape in
real galaxies. However, the difference in absolute circular velocity
predicted between SIDM and CDM at these radii is well within the
normalization uncertainties of the estimators (see Fig. 5).

As an example of the applicability of our estimator, we have
combined it with the Wolf et al. (2010) estimator at r−3 for line-of-
sight velocities to explore the mass profiles of Draco and Sculptor.
Both galaxies are consistent with inhabiting cuspy NFW subhaloes
with densities consistent with those expected in CDM with Vmax

� 34 and 19 km s−1, respectively, though current uncertainties
allow for a variety of inner profile slopes and are consistent with
SIDM densities given the sparsity of the data. In the coming era of
precision-based measurements of stellar proper motions, we expect
the internal structure of dwarf galaxies to be revealed with more
clarity.
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APPENDI X A : MASS PRO FI LES AS A
FUNCTI ON O F O BSERVA BLES

Here, we derive a single expression for the mass profile of spheroidal
galaxies as a function of observable combinations found in the plane
of the sky. A crucial argument that we have imposed previously
is that projected observables can be re-formalized to de-projected
quantities, and vice versa. To do this, we make note of the utilization
of the Abel inversion (Binney & Tremaine 2008)

f (x) =
∫ ∞

x

dt√
t − x

g(t) ⇐⇒ g(x) = − 1

π

∫ ∞

t

dx√
x − t

df

dt
.

(A1)

A1 Measurements along the line of sight

While a complete derivation is given in Wolf et al. (2010), we quote
the mass profile for completeness: Given measurements along the
line of sight and assuming a constant anisotropy model, β(r) = β0,
the mass profile come to be

M(r|β0) = {K1 (r, R|β0) + K2 (r, R|β0)}
Gπ (β0 − 1)n�(r)

, (A2)

where the integral kernels are

K1 (r, R|β0) =
∫ ∞

r2
dR2 R2 d2

(

�σ

2
los

)
(dR2)2

2r3/R3√
1 − r2/R2

K2 (r, R|β0) =
∫ ∞

r2
dR2 R2 d2

(

�σ

2
los

)
(dR2)2

β0
3 − 2β0

β0 − 1

×
( r

R

) 1
1−β0 B1−r2/R2

(
1

2
,

2 − 3β0

2(1 − β0)

)
,

For compactness, the lower incomplete beta function is incorpo-
rated

Bx(p, q) :=
∫ x

0
dy yp−1(1 − y)q−1. (A3)

In Fig. 1, we demonstrate the robustness of this mass profile. As
an example, we consider the assumptions used in deriving the
idealized case of M−3: a constant β model and a constant velocity
dispersion measurement σ 2

los(R) � 〈σ 2
los〉∗. For 〈σ 2

los〉∗, we use the
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median observational quantities for Draco and Sculptor given in
Table 1. As shown, the different values of β0 converge at r−3 of the
stellar density profile, at least for an assumed Plummer profile. The
idealized mass estimator, M−3, is shown as the white dot intersecting
where the profiles converge.

A2 Plane of the sky: Measurements parallel to R

To further clarify that lack of a radius that minimizes the anisotropy
in an idealized case, consider the utilization of the Jeans equation
for measurements of σR. We start by the massaging the form of
equation (9) in order to isolate out the R dependence in the integral
kernel:


�σ
2
R(R) =

∫ ∞

R2

dr2

√
r2 − R2

[
1 − β(r) + R2

r2
β(r)

]
n�σ

2
r (r)

=
∫ ∞

R2

dr2

√
r2 − R2

n�σ
2
r −

∫ ∞

R2
dr2 n�σ

2
r (r2 − R2)√
r2 − R2

=
∫ ∞

R2

dr2

√
r2 − R2

[
n�σ

2
r (r) −

∫ ∞

r2
dr̃2 βn�σ

2
r

2r̃2

]
. (A4)

Here in the second line, we expanded the second term with
integration by parts and evaluating the boundary integration to null
by motivating that combination of βn�σ

2
r falls faster than r−1 at

large r.
We then use the invertable form and deproject via an Abel

inversion to obtain

n�σ
2
r (r) −

∫ ∞

log r

d log r̃ βn�σ
2
r = − 1

π

∫ ∞

r2

dR2

√
R2 − r2

d
(

�σ

2
R
)

dR2
.

(A5)

To isolate out n�σ
2
r , we differentiate with respect to log r,

d
(
n�σ

2
r

)
d log r

+ βn�σ
2
r = −2r2

π

∫ ∞

r2

dR2

√
R2 − r2

d2
(

�σ

2
R
)

(dR2)2
, (A6)

and then deploy the integrating factor

h(r) = exp

{∫ log r

log a

d log r̃ β(r)

}
, (A7)

where a is a constant chosen so that the value of the integrand
approaches zero at the lower limit. This then gives us

n�σ
2
r (r|β) = −h−1

π

∫ ∞

r2
dr̃2

[ ∫ ∞

r̃2

dR2

√
R2 − r2

d2
(

�σ

2
R
)

(dR2)2

]
h

= −h−1

π

∫ ∞

r2
dR2

[ ∫ R2

r2

dr̃2

√
R2 − r̃2

h

]
d2

(

�σ

2
R
)

(dR2)2
.

(A8)

Here, n�σ
2
r (r) can be modelled by the adoption of a parametric form

of β(r). This can also be taken and inserted in equation (4) to model
the integrated mass.

For our idealized case, suppose the anisotropy is taken to be a
constant value for the inner region of the system, β(r) = β0. We
will have h(r) → rβ0 which allows us rewrite the inner integral in
terms of the lower incomplete beta function:

n�σ
2
r (r|β0) = r−β0

π

∫ ∞

r2
dR2 Rβ0+1 d2

(

�σ

2
R
)

(dR2)2
B1−r2/R2

×
(

1

2
,
β0 + 2

2

)
. (A9)

The mass profile is then obtained by hitting the previous expres-
sion with a derivative in respect to log r and insert it into equation (4)

to acquire the implied profile

M(r|β0) = r

πGn�(r)

{
R̃1(r|β0) + R̃2(r|β0)

}
, (A10)

where

R̃1(r|β0) = 2r2
∫ ∞

r2

dR2

√
R2 − r2

d2
(

�σ

2
R
)

(dR2)2
,

R̃2(r|β0) = −β0r
−β0

∫ ∞

r2
dR2Rβ0+1 d2

(

�σ

2
R
)

(dR2)2
B1−r2/R2

×
(

1

2
,
β0 + 2

2

)
.

This relation replaces the dependence of deriving the mass of a
dispersion-supported system from unknown radial velocity dis-
persion with the second ordered derivatives of the the observable
product, 
�σ

2
R(R). The middle plot in Fig. 1 realizes equation (A10)

for various values of β0 and a constant velocity dispersion, σ 2
R �

〈σ 2
R〉∗. We use the medium parameters of Sculptor given in Table 1

as demonstration. As we predicted previously, none of the constant
β0 dependent Jeans mass profiles converge to a mass value like we
have seen in in the top plot in Fig. 1.

A3 Plane of the sky: Measurements transverse to R

Consider the application of the Jeans equation for measurements
based on the mapping of equation (10). Since this is already in a
form that is invertable, we deproject via an Abel inversion in order
to isolate out n�σ

2
r (r) combination:

n�σ
2
r (r) = 1

π (β − 1)

∫ ∞

r2

dR2

√
R2 − r2

d
(

�σ

2
T
)

dR2
. (A11)

We see that the above relation is unique in comparison with
what we have seen in the previous sections, as equation (A11)
is unembelished and relatively simple in its form. This allows us to
write a mass profile that can be dependent on some arbitrary form
of β(r).

A3.1 Spatially constant velocity dispersion anisotropy

Assume a constant anisotropy model, β(r) =β0. It is straightforward
to differentiate both sides with respect to log r and massage it to
the form that, along with equation (A11), can be inserted into
equation (4) to obtain the implied mass profile

M(r|β0) = 2r

Gπ (1 − β0)n�(r)

{
T̃1(r|β0) + T̃2(r|β0)

}
, (A12)

where

T̃1(r|β0) = r2
∫ ∞

r2

dR2

√
R2 − r2

d2
(

�σ

2
T
)

(dR2)2
,

T̃2(r|β0) = β0

∫ ∞

r2

dR2

√
R2 − r2

d
(

�σ

2
T
)

dR2
.

With this, we have eliminated the dependency of the unknown
dispersion profile, σ r(r), and have the mass profile be dependent
only on the form of well-defined observables and an arbitrary value
of β0. The bottom plot in Fig. 1, actualizes this mass profile by
considering the idealized assumptions used in the derivation of M−2:
an constant anisotropy model and a constant velocity dispersion
σ 2
T � 〈σ 2

T 〉∗. We use the median values of Scupltor from Table 1
for as a demonstration. As shown, we recover the idealized results
derived previously in the main text, where the of the mass profiles
converge at r−2 for various values of constant anisotropy, β0.
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Figure A1. Integrated mass profiles for Draco and Sculptor with radial anisotropy. The lines correspond to several choices of fixed velocity dispersion
anisotropy β0. Mass profile curves are generated using equation (A14) assuming a Plummer profile and constant σ los. Here, the small white circle indicates
the mass predicted by the idealized estimator, equation (26), which intersects at the mass that is independent of the value of β0.

A3.2 General velocity dispersion anisotropy

Assume now a generalized β(r) model, we differentiate both sides
of equation (A11) with respect to log r to have

d
(
n�σ

2
r

)
d log r

(β − 1) − γββn�σ
2
r (r) = 2r2

π

∫ ∞

r2

dR2

√
R2 − r2

×d2
(

�σ

2
T
)

(dR2)2
. (A13)

We then expand out the differential on the left-hand side and
substitute its resulting form into equation (4) to obtain the implied
mass profile for some generalized β(r) model:

M(r|β) = 2r

Gπ [1 − β(r)]n�(r)

{
T̃1(r|β) + T̃2(r|β)

}
, (A14)

where

T̃1(r|β) = r2
∫ ∞

r2

dR2

√
R2 − r2

d2
(

�σ

2
T
)

(dR2)2
,

T̃2(r|β) = β(r)

[
1 − γβ

2[1 − β(r)]

]∫ ∞

r2

dR2

√
R2 − r2

d
(

�σ

2
T
)

dR2
.

In the limiting case of a constant β0 model, we see that we re-
obtain equation (A12). In particular, γ β term, if large enough, could
nominally shift the location of r−2 of the implied mass profile, as
this is true for any anisotropic characterizations that become close
to isotropic. However, the behaviour of the βγ β combination in
T̃2(r) is still well behaved.

In Fig. A1, we demonstrate equation (A14) by only assuming
a constant velocity dispersion, σ 2

T (R) � 〈σ 2
T 〉∗, and a Plummer

profile. We consider two functional forms frequently used to model
in observational Jeans modelling studies:

(i) The Osipkov–Merritt (Osipkov 1979; Merritt 1987, subscript
OM) profile is formulated from a one-parameter family of spheri-

cally stellar systems, such that,

βOM(r) = r2

r2 + r2
a

, (A15)

where ra is the anisotropy radius that gives the stellar sub-
component of a velocity distribution. Notably, β → 0 as r � ra

and β → 1 as r � ra. Different values of ra are given in the top row.
(ii) Another parametrization is introduced by Mamon–Łokas

(Mamon & Łokas 2005, subscript ML) profile:

βML(r) = 1

2

r

r + ra

. (A16)

Similar limits as βOM(r), but β → 1/2 as r � ra. Different values
of ra are given in the bottom row.

The values of ra are subjugated between two extreme cases, one
where ra = ∞, making the profile isotropic at all radii, and another
as low as ra = Re, which allows for a quicker transition of the
profile being anisotropic to isotropic around the region of Re. For
values of ra � 2Re, the estimator appears robust for both models
of βOM(r) and βML(r). In the instances where ra � Re, both M−3

(magenta circle) and M−2 (cyan circle) fail for the faster transition
value of βOM while is still consistent with βML. Indubitably, as M−3

and M−2 breaks down as the log-slope of the anisotropy profile
is too large. The relative simplicity of equation (A14) allows for
a complete modelling of the mass profile based off of the proper
motions tangential along the plane of the sky. The caveat here is
that realization of the complete dynamical profile requires highly
accurate observational data, as first and second derivatives of surface
profile is required.
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